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Abstract: Cross-domain text categorization targets on adapting the knowledge learnt from a labeled source domain to an
unlabeled target domain, where the documents from the source and target domains are drawn from different distributions.
However, in spite of the different distributions in raw-word features, the associations between word clusters (conceptual features)
and document classes may remain stable across different domains. In this paper, we exploit these unchanged associations as the
bridge of knowledge transformation from the source domain to the target domain by the non-negative matrix tri-factorization.
Specifically, we formulate a joint optimization framework of the two matrix tri-factorizations for the source- and target-domain
data, respectively, in which the associations between word clusters and document classes are shared between them. Then, we
give an iterative algorithm for this optimization and theoretically show its convergence. The comprehensive experiments show
the effectiveness of this method. In particular, we show that the proposed method can deal with some difficult scenarios where
baseline methods usually do not perform well.  2010 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 100–114, 2011
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1. INTRODUCTION

Many learning techniques work well only under a
common assumption: the training and test data are drawn
from the same feature space and the same distribution.
When the features or distribution change, most statistical
models need to be rebuilt from scratch using newly
collected training data. However, in many real-world
applications it is expensive or impossible to recollect the
needed training data. It would be nice to reduce the need
and effort to recollect the training data. This leads to the
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research of cross-domain learning1 [1–9]. In this paper,
we study the problem of cross-domain learning for text
categorization. We assume that the documents from the
source and target domains share the same space of word
feature, also, they share the same set of document labels.
Under these assumptions, we study how to accurately
predict the class labels of the documents in the target
domain with a different data distribution.

In cross-domain learning for text categorization it is
quite often that different domains use different phrases to
express the same concept. For instance, the words indicating

1 Previous works often refer this problem as transfer learning
or domain adaption.

 2010 Wiley Periodicals, Inc.
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the concept of computer science can be ‘hardware’,
‘software’, ‘program’, ‘programmer’, ‘disks’, ‘rom’, and so
on. However, the frequencies of these words are different in
different domains. In the news about a hardware company
the high-frequency words may be ‘hardware’, ‘disks’,
‘rom’, etc., while the words like ‘software’, ‘program’
and ‘programmer’ are the high-frequency ones in the
domain of software companies. Thus, features on raw
words are not reliable for text classification, especially
in cross-domain learning. On the other side, the concept
behind the words may have the same effect to indicate
the class labels of the documents from different domains.
In this example, a page is more likely to be computer-
related if it contains the concept of computer science.
In other words, only concepts behind raw words are
reliable in indicating taxonomy. Additionally, this reliable
association between word concepts and document classes
is also stable across data domains. Therefore, we can
use it as bridge to transfer knowledge cross different
domains.

Intuitive Example. Since a word concept can be
expressed as a group of related words, word concept and
word cluster are interchangeable in the following. To intu-
itively show the motivation behind this work we borrow
the example introduced in Ref. [10]. In panel (a) of Fig. 1,
there are four synthetic documents, specifically, D1 and D2
belong to the class of information retrieval (IR), and D3
and D4 belong to the class of computer vision (CV). Let
D1 and D3 be the data with labels in the source domain,
and D2 and D4 without labels in the target domain. Panel
(b) of Fig. 1 gives the vector representation of data set
based on raw words (the data set includes six distinct words
after removing stop words). We find that if these words
in the data set can be grouped into three word clusters,
the data set can also be represented based on concepts
shown in Panel (c) of Fig. 1. Clearly, the features over
the word clusters are more useful in classification than
the raw-word features. Furthermore, as shown in Panel
(d) we compute the co-occurrence matrixes of the con-
cept cluster and document class for the source and target
domains, respectively. We can see that in this example
these two matrixes are the same. Through this manual-built
example we show that in general the association between
word cluster and document class remains stable across data
domains. Thus, it can be used as the bridge to transfer
knowledge.

Motivated by this observations, in this study, we
explicitly consider the stable associations between word
concepts and document classes across data domains by
the non-negative matrix factorization (NMF). The basic
formula of matrix tri-factorization is as follows:

X m×n = Fm×k1S k1×k2GT
n×k2

, (1)

Fig. 1 An intuitive example. Concept based on classification is
more stable than raw word based, and the same association of
word cluster and document class may be shared by different
domains. (a) A synthetic data set; (b) vector representation for
data set based on raw words; (c) vector representation for data
set based on concepts; (d) The co-occurence of word cluster and
document class on source and target domains.

where X is the joint probability matrix for a given word-
document matrix Y (X = Y∑

i,j Y i,j
), and m, n, k1, k2 are the

numbers of words, documents, word clusters, and document
clusters, respectively. Conceptually, F denotes the word
clustering information, G denotes the document clustering
information, and S denotes the association between word
clusters and document clusters. Later, we will detail the
meaning of F , S , and G , and argue that only S is stable
for different domains, while F and G can be different in
different domains.

Therefore, we propose a matrix tri-factorization-based
classification framework (MTrick) for cross-domain learn-
ing. Indeed, we conduct a joint optimization for the
two matrix tri-factorizations on the source- and target-
domain data, respectively, where S , denoting the associa-
tion between word clusters and document clusters, is shared
in these two tri-factorizations as the bridge of knowledge
transformation. Additionally, the class label information of
the source-domain data is injected into the matrix G for
the source domain to supervise the optimization process.
Then, we develop an alternately iterative algorithm to solve
this joint optimization problem, and theoretically prove its
convergence. Experimental results show the effectiveness
of MTrick for cross-domain learning.

Statistical Analysis and Data Mining DOI:10.1002/sam
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Contributions. We conclude the contributions of this
work as follows:

(1) For the problem of cross-domain classification, we
observe that though the distributions in raw-word
features are different, the associations between word
clusters (conceptual features) and document classes
may remain stable across different domains for
classification.

(2) Along this line, we proposed to simultaneously tri-
factorize two matrixes on the source and target
domains, while using the association between word
clusters and document clusters as bridge to transfer
knowledge.

(3) To solve the joint optimization problem, we develop
an iterative algorithm and theoretically analyze its
convergence.

(4) Finally, we conduct systemic experiments to show
the effectiveness of the proposed algorithm, includ-
ing binary classification and multiple class cases.
Experimental results note that our algorithm can
gain significant improvement over baseline meth-
ods, and also can perform well on some difficult
scenarios.

In our previous work [11], we propose a MTrick for
cross-domain learning under the observation that though
the distributions are different cross different data domains,
the association between word cluster and document class
may retain the same and be independent of data domains.
Then we develop an alternately iterative algorithm to
solve the optimization problem and theoretically analyze
its convergence. Finally, the experiments on two-class
classification tasks show the advantage of the proposed
method.

In this paper, we further give an intuitive example to
make more clear of the motivation for our work. Although
the distributions are different cross different domains,
the association between word cluster and document class
may retain the same. Thus we can explicitly exploit the
stable association cross different domains for cross-domain
learning. We also conduct much more experiments to
further validate the effectiveness of the proposed method.
The new experiments include 4 × 100 problem instances
on four data sets for three-class text classification, and
96 problem instances for two-class text classification. All
these results again validate the superiority of the proposed
method, and MTrick can also perform very well even
when the difficulty degree of transfer learning is great (see
Section 6.4).

Overview. The remainder of this paper is organized
as follows. In Section 2, we present related work, then
we introduce the framework of MTrick in Section 3.
Section 4 presents the optimization solution. In Section 5,
we provide a theoretical analysis of the convergence of the
proposed iterative method. Section 6 gives the experimental
evaluation to show the effectiveness of MTrick. Finally,
Section 7 concludes the paper.

2. RELATED WORK

In this section, we introduce some previous works which
are closely related to our work.

2.1. Non-negative Matrix Factorization

Since our algorithm framework is based on the NMF,
so here we introduce some works about NMF. NMF has
been shown to be widely used for many applications, such
as dimensionality reduction, pattern recognition, clustering,
and classification [12–18]. Lee and Seung [13] proposed
the NMF to decompose the multivariate data, and gave
two different multiplicative algorithms for NMF. Moreover,
they applied an auxiliary function to prove the monotonic
convergence of both algorithms. After this pioneering work
researchers extended this model and apply them to differ-
ent applications. Guillamet et al. [15] extended the NMF
to a weighted non-negative matrix factorization (WNMF)
to improve the capabilities of representations. Experimen-
tal results show that WNMF achieves a great improvement
in the image classification accuracy compared with NMF
and principal component analysis (PCA). Ding et al. [12]
provided an analysis of the relationship between 2-facts
and 3-facts NMF, and proposed an orthogonal non-negative
matrix tri-factorization for clustering. They empirically
showed that the bi-orthogonal non-negative matrix tri-
factorization-based approach can simultaneously cluster
rows and columns of the input data matrix effectively. Wang
et al. [17] developed a novel matrix factorization-based
approach for semisupervised clustering and extended it to
different kinds of constrained coclusterings. The probabilis-
tic topic models, such as probabilistic latent semantic analy-
sis (PLSA) [19] and latent dirichlet allocation (LDA) [20],
can also be considered as a method of non-negative matrix
tri-factorization [21]. They are different from the proposed
model of MTrick in that: the word clusters and docu-
ment clusters in topic models share the same semantic
space, actually the space of latent topics [19]. However, in
MTrick, the word clusters and document clusters have dif-
ferent semantic spaces, and the associations between word
clusters and document clusters are explicitly expressed.

Researchers also leverage NMF for transfer learn-
ing tasks. Li et al. [8,22] proposed two stage methods

Statistical Analysis and Data Mining DOI:10.1002/sam
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for sentiment classification based on constrained non-
negative matrix tri-factorizations. Both of them first trans-
fer document-side sentiment into word-level sentiment on
the source-domain data, and then transfers word sentiment
learnt in the first stage to documents in the target domain.
Also the method in Ref. [22] needs some labeled data.
While our method focuses on modeling the association of
word concepts and document classes, which is domain-
independent. Also our method does not need the human
effort to label some data in target domain. As shown by the
example in Section 1, different domains may use different
words to express the same word concept, so we think that
the word cluster in two domains may be similar, but not
exactly the same due to the distribution difference. Thus,
in this paper, we propose to share only the association
between word clusters and document classes. Li et al. [18]
developed a novel approach for cross-domain collaborative
filtering, in which a codebook (referred as the association
between word clusters and document clusters in our paper)
is shared. In the above two papers, they dealt with two
separate tasks of matrix factorization: first on the source
domain, and then on the target domain. Additionally, the
shared information is the output from the first step, and
also the input of the second step. However, in our work,
we combine the two factorizations into a collaborative opti-
mization task, and show the extra value of this collaborative
optimization by the experimental results.

2.2. Cross-domain Learning

Recent years have witnessed numerous research in cross-
domain learning. In general, cross-domain learning for
classification can be grouped into two categories, namely
instance weighting-based and feature selection-based cross-
domain learning methods.

Instance weighting-based approaches focus on the
reweighted strategy that increases the weight of instances
which are close to the target domain in data distribution and
decreases the weight of instances which are far from the tar-
get domain. Dai et al. [7] extended boosting-style learning
algorithm to cross-domain learning, in which the training
instances with different distribution from the target domain
are less weighted for data sampling, while the training
instances with the similar distribution to the target domain
are more weighted. Jiang and Zhai [23] also dealt with the
domain adaptation from the view of instance weighting.
They found that the difference of the joint distributions
between the source domain and target domain is the cause
of the domain adaptation problem, and proposed a general
instance weighting framework, which has been validated to
work well on natural language processing (NLP) tasks.

Feature selection-based approaches aim to find a common
feature space which is useful to cross-domain learning.

Jiang and Zhai [24] developed a two-phase feature selection
framework for domain adaptation. In that approach, they
first selected the features called generalizable features
which are emphasized while training a general classifier.
Then they leveraged unlabeled data from target domain
to pick up features that are specifically useful for the
target domain. Dai et al. [5] proposed a coclustering-based
approach for this problem. In this method, they identified
the word clusters among the source and target domains,
via which the class information and knowledge propagated
from source domain to target domain. Pan et al. [25]
proposed a dimensionality reduction approach, in which
they can find out the latent feature space which can be
regarded as the bridged knowledge between the source
domain and the target domain. Si et al. [26] presented the
cross-domain discriminative Hessian Eigenmaps to find a
subspace, in which the distributions of training and test
data are similar; also both the local geometry and the
discriminative information can be well passed from the
training domain to test domain. Si et al. [27] also proposed
a transfer subspace learning framework, which includes
two items. The first one is the general subspace learning
framework, which can apply to various dimensionality
reduction algorithms; while the second one minimizes the
Bregman divergence between the distribution of training
data and testing data in the selected subspace. The proposed
algorithm in this paper can also be regarded as the feature
selection-based approach for cross-domain learning.

3. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we first introduce some basic concepts
and mathematical notations used throughout this paper, and
then formulate the MTrick.

3.1. Basic Concepts and Notations

In this paper, we use bold letters, such as u and v, to
represent vectors. Data matrixes are written in bold upper
case, such as X and Y . Also, X(ij) indicates the ith row and
j th column element of matrix X . Calligraphic letters, such
as A and D, are used to represent sets. Finally, we use R

and R+ to denote the set of real numbers and non-negative
real numbers respectively.

DEFINITION 1: (Trace of matrix): Given a data matrix
X ∈ R

n×n, the trace of X is computed as

Tr(X ) =
n∑

i=1

X(ii). (2)

Statistical Analysis and Data Mining DOI:10.1002/sam



104 Statistical Analysis and Data Mining, Vol. 4 (2011)

Actually, the trace of matrix can also be computed
when the matrix is not a square matrix. Without losing
any generality, let m < n and X ∈ R

m×n, then Tr(X ) =∑m
i=1 X(ii).

DEFINITION 2: (Frobenius norm of matrix): Given a
data matrix X ∈ R

m×n, the Frobenius norm of X is compu-
ted as

||X ||2 =
m∑

i=1

n∑
j=1

X2
(ij). (3)

Additionally, we give some properties of the trace and
Frobenius norm, which will be used in Sections 4 and 5.

Property 1 Given a matrix X ∈ R
m×n, then

Tr(XTX) = Tr(XXT). (4)

Property 2 Given matrixes X, Y ∈ R
m×n, then

Tr(a · X + b · Y) = a · Tr(X) + b · Tr(Y). (5)

Property 3 Given a matrix X ∈ R
m×n, then

||X||2 = Tr(XTX) = Tr(XXT). (6)

3.2. Problem Formulation

For the joint probability matrix X s ∈ R
m×ns+ in the

source-domain data (where m is the number of words, and
ns is the number of documents in the source domain), we
formulate the following constrained optimization problem:

min
F s,S s,Gs

||X s − FsSsGT
s ||2 + α

ns
· ||G s − G0||2,

s.t.
k1∑

j=1

Fs(ij)
= 1,

k2∑
j=1

Gs(ij)
= 1,

(7)

where α is the trade-off parameter, G0 contains the true
label information in the source domain. Specifically, when
the ith instance belongs to class j , then G0(ij)

= 1; and
G0(ik)

= 0 for k �= j . In this formulation, G0 is used as the
supervised information by requiring G s is similar to G0.
After minimizing Eq. (7), we obtain F s, G s, S s, where

• F s ∈ R
m×k1+ represents the information of word

clusters, and Fs(ij) is the probability that the ith word
belongs to the j th word cluster.

• G s ∈ R
ns×k2+ represents the information of document

clusters, and Gs(ij) is the probability that the ith
document belongs to the j th document cluster.

• S s ∈ R
k1×k2+ represents the associations between word

clusters and document clusters.

Then, for the joint probability matrix X t ∈ R
m×nt+ in

the target-domain data (nt is the number of documents in
the target domain), we can also formulate the following
constrained optimization problem:

minF t,G t ||X t − F tS 0GT
t ||2

s.t.
k1∑

j=1

Ft(ij)
= 1,

k2∑
j=1

Gt(ij)
= 1,

(8)

where S 0 is the optimal value for S s resulting from solving
the problem in Eq. (7). In this formulation, S 0 is used as the
supervised information for the optimization process. This is
motivated by the analysis that the source and target domain
may share the same associations between word clusters
and document clusters. After minimizing Eq. (8), we obtain
F t, G t. Their explanations are similar to those for F s, G s,
respectively. Then, the class label of the ith document in
the target domain is output as

indexi = arg max
j

Gt(ij)
. (9)

Finally, we can combine the two sequential optimization
problems in Eqs. (7) and (8) into a joint optimization
formulation as follows:

min
F s,Gs,S ,F t,G t

||X s − F sSGT
s ||2 + α

ns
· ||G s − G0||2

+β · ||X t − F tSGT
t ||2,

s.t.
k1∑

j=1

Fs(ij)
= 1,

k2∑
j=1

Gs(ij)
= 1,

k1∑
j=1

Ft(ij)
= 1,

k2∑
j=1

Gt(ij)
= 1,

(10)

where α ≥ 0 and β ≥ 0 are the trade-off factors. In this
formulation, S is shared in the matrix factorizations of the
source and target domains. This way S is used as the bridge
of knowledge transformation from the source domain to the
target domain. Next we focus only on how to solve the joint
optimization problem in Eq. (10), which can cover both the
subproblems in Eqs. (7) and (8).

4. SOLUTION TO THE OPTIMIZATION
PROBLEM

In this section, we develop an alternate iterative algo-
rithm to solve the problem in Eq. (10). According to the

Statistical Analysis and Data Mining DOI:10.1002/sam



Zhuang et al.: Exploiting Associations between Word Clusters and Document Classes 105

preliminary knowledge in Section 3.1, we know that the
minimization of Eq. (10) is equivalent to minimizing the
following equation:

L(F s, G s, S , F t, G t)

= Tr(X T
s X s − 2X T

s F sSGT
s + G sS TF T

s F sSGT
s )

+ α

ns
· Tr(G sGT

s − 2G sGT
0 + G0GT

0 )

+β · Tr(X T
t X t − 2X T

t F tSGT
t + G tS

TF T
t F tSGT

t ),

s.t.
k1∑

j=1

Fs(ij)
= 1,

k2∑
j=1

Gs(ij)
= 1,

k1∑
j=1

Ft(ij)
= 1,

k2∑
j=1

Gt(ij)
= 1.

(11)

where L is the objective function. The partial differential
of L is as follows:

∂L
∂F s

= −2X sG sS T + 2F sSGT
s G sS T,

∂L
∂G s

= −2X T
s F sS + 2G sS TF T

s F sS

+ 2α

ns
· (G s − G0),

∂L
∂S

= −2F T
s X sG s + 2F T

s F sSGT
s G s

− 2β · F T
t X tG t + 2β · F T

t F tSGT
t G t,

∂L
∂F t

= −2β · X tG tS T + 2β · F tSGT
t G tS T,

∂L
∂G t

= −2β · X T
t F tS + 2β · G tS TF T

t F tS .

Since L is not concave, it is hard to obtain the global
solution by applying the latest nonlinear optimization
techniques. In this study, we develop an alternately iterative
algorithm, which can converge to a local optimal solution.

In each round of iteration these matrixes are updated as

Fs(ij)
← Fs(ij)

·
√

(XsGsST)(ij)

(FsSGT
s GsST)(ij)

, (12)

Gs(ij)
← Gs(ij)

·
√√√√ (XT

s FsS + α
ns

· G0)(ij)

(GsSTF T
s FsS + α

ns
· Gs)(ij)

, (13)

Ft(ij)
← Ft(ij)

·
√

(XtGtST)(ij)

(FtSGT
t GtST)(ij)

, (14)

Gt(ij)
← Gt(ij)

·
√

(XT
t FtS)(ij)

(GtSTF T
t FtS)(ij)

. (15)

Then, we normalize F s, G s, F t, G t to satisfy the equality
constraints. The normalization formulas are as follows:

Fs(i·) ← Fs(i·)∑k1
j=1 Fs(ij)

, (16)

Gs(i·) ← Gs(i·)∑k2
j=1 Gs(ij)

, (17)

Ft(i·) ← Ft(i·)∑k1
j=1 Ft(ij)

, (18)

Gt(i·) ← Gt(i·)∑k2
j=1 Gt(ij)

. (19)

Next, using the normalized F s, G s, F t, G t we update S as
follows:

S(ij) ← S(ij) ·
√

(F T
s XsGs + β · F T

t XtGt)(ij)

(F T
s FsSGT

s Gs + β · F T
t FtSGT

t Gt)(ij)

.

(20)

The detailed procedure of this iterative computation is given
in Algorithm 1.

5. ANALYSIS OF ALGORITHM CONVERGENCE

To investigate the convergence of iterating rules in
Eqs. (12)–(20), we first check the convergence of F s when
G s, S , F t, G s are fixed. For this optimization problem with
constraints we formulate the following Lagrangian function:

G(F s) = ||X s − F sSGT
s ||2

+ Tr[λ(F suT − vT)(F suT − vT)T], (21)

where λ ∈ R
m×m, u ∈ R

1×k1 , v ∈ R
1×m (the entry values

of u and v are all equal to 1), and ||X s − F sSGT
s ||2 =

Tr(X T
s X s − 2X T

s F sSGT
s + G sS TF T

s F sSGT
s ). Then,

∂G
∂F s

= −2X sG sS T + 2F sSGT
s G sS T + 2λF suTu − 2λvTu.

(22)

LEMMA 1: Using the update rule given in Eq. (23),
Eq. (21) will monotonously decrease.

Fs(ij)
← Fs(ij)

·
√

(XsGsST + λvTu)(ij)

(FsSGT
s GsST + λFsuTu)(ij)

. (23)

Proof: To prove Lemma 1 we describe the definition of
auxiliary function [13] as follows. �
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Algorithm 1 The MTrick Algorithm

Input: The joint probability matrix X s ∈ R
m×ns+ on labeled

source domain; the true label information G0 of source
domain; the joint probability matrix X t ∈ R

m×nt+ on unla-
beled target domain; and the trade-off factors α, β; the error
threshold ε > 0; and the maximal iterating number max.
Output: The information of word clusters F s and F t, the
information of document clusters G s and G t, the association
between word clusters and document clusters S .

1. Initialize the matrix variables as F (0)
s , F (0)

t , G (0)
s ,

G (0)
t and S (0). The initialization method will be

detailed in the experimental section.

2. Calculate the initial value L(0) of Eq. (11).

3. k := 1.

4. Update F (k)
s based on Eq. (12), and normalize

F (k)
s based on Eq. (16).

5. Update G (k)
s based on Eq. (13), and normalize

G (k)
s based on Eq. (17).

6. Update F (k)
t based on Eq. (14), and normalize

F (k)
t based on Eq. (18).

7. Update G (k)
t based on Eq. (15), and normalize

G (k)
t based on Eq. (19).

8. Update S (k) based on Eq. (20).

9. Calculate the value L(k) of Eq. (11). If |L(k) −
L(k−1)| < ε, then turn to Step 11.

10. k := k + 1. If k ≤ max, then turn to Step 4.

11. Output the word clustering information F (k)
s and

F (k)
t , the document clustering information G (k)

s

and G (k)
t , the association between word clusters

and document clusters S (k).

DEFINITION 3: (Auxiliary function): A function H(Y, Ỹ)

is called an auxiliary function of T(Y) if it satisfies

H(Y , Ỹ ) ≥ T(Y ), H(Y , Y ) = T(Y ), (24)

for any Y , Ỹ .

Then, define

Y (t+1) = arg minY H(Y , Y (t)). (25)

Through this definition,

T(Y (t)) = H(Y (t), Y (t)) ≥ H(Y (t+1), Y (t)) ≥ T(Y (t+1)).

It means that the minimizing of the auxiliary function
of H(Y , Y (t)) (Y (t) is fixed) has the effect to decrease the
function of T.

Now we can construct the auxiliary function of G as,

H(F s, F ′
s) = −2

∑
ij

(XsGsS
T)(ij)F

′
s(ij)

(
1 + log

Fs(ij)

F ′
s(ij)

)

+
∑
ij

(F ′
sSGT

s GsS
T)(ij)

F 2
s(ij)

F ′
s(ij)

+
∑
ij

(λF ′
suTu)(ij)

F 2
s(ij)

F ′
s(ij)

− 2
∑
ij

(λvTu)(ij)F
′
s(ij)

(
1 + log

Fs(ij)

F ′
s(ij)

)
.

(26)

Obviously, when F ′
s = F s the equality H(F s, F ′

s) = G(F s)

holds. Also we can prove the inequality H(F s, F ′
s) ≥

G(F s) holds using the similar proof approach in Ref. [12].
Then, while fixing F ′

s, we minimize H(F s, F ′
s).

∂H(F s, F ′
s)

∂Fs(ij)

= −2(XsGsS
T)(ij)

F ′
s(ij)

Fs(ij)

+ 2(F ′
sSGT

s GsS
T + λF ′

suTu)(ij)

Fs(ij)

F ′
s(ij)

− 2(λvTu)(ij)

F ′
s(ij)

Fs(ij)

.

(27)

Let ∂H(F s,F ′
s)

∂Fs(ij)
= 0,

⇒ Fs(ij)
= F ′

s(ij)
·
√

(XsGsST + λvTu)(ij)

(F ′
sSGT

s GsST + λF ′
suTu)(ij)

. (28)

Thus, the update rule given in Eq. (23) decreases the values
of G(Fs). Then, Lemma 1 holds.

The only obstacle left is the computation of the
Lagrangian multiplier λ. Actually, λ in this problem is
to drive the solution to satisfy the constrained condition
that the sum of the values in each row of F s is 1. Here
we propose a simple normalization technique to satisfy the
constraints regardless of λ. Specifically, in each iteration we
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use Eq. (16) to normalize F s. After normalization, the two
constants of λF suTu and λvTu are equal. Thus, the effect
of Eqs. (12) and (16) can be approximately equivalent to
Eq. (23) when only considering the convergence. In other
words, we adopt the approximate update rule of Eq. (12)
by omitting the items which depend on λ in Eq. (23). We
can use the similar method to analyze the convergence of
the update rules for G s, F t, G t, S in Eqs. (13), (14), (15),
and (20), respectively.

THEOREM 1: (Convergence) After each round of iter-
ation in Algorithm 1 the objective function in Eq. (10) will
not increase.

According to the lemmas for the convergence analysis on
the update rules for F s, G s, F t, G t, S , and the Multiplica-
tive Update Rules [13], each update step in Algorithm 1
will not increase Eq. (10) and the objective has a lower
bound zero, which guarantee the convergence. Thus, the
above theorem holds.

6. EXPERIMENTAL VALIDATION

In this section, we show experiments to validate the
effectiveness of the proposed algorithm. We focus on the
two-class and three-class classification problems in the
experiments (the number of document clusters are set to
two and three, respectively).

6.1. Data Preparation

20Newsgroup2 is one of the benchmark data sets for text
categorization. Since the data set is not originally designed
for cross-domain learning, we need to do some data prepro-
cessing. The data set is a collection of approximately 20 000
newsgroup documents, which is partitioned evenly cross 20
different newsgroups. Each newsgroup corresponds to a dif-
ferent topic, and some of the newsgroups are very closely
related. Thus, they can be grouped into certain top category.
For example, the top category sci contains four subcate-
gories sci.crypt, sci.electronics, sci.med, and sci.space. Four
top categories in 20Newsgroup are used for our experi-
ments, which are detailed in Table 1.

6.1.1. Two-class classification

We select three top categories sci, talk, and rec to
perform two-class classification experiments. Any two
top categories can be selected to construct two-class
classification problems, and we can construct three data

2 http://people.csail.mit.edu/jrennie/20Newsgroups/

Table 1. The top categories and their subcategories.

Top categories Subcategories

comp
comp.{graphics, sys.mac.hardware}

comp.sys.ibm.pc.hardware
comp.os.ms-windows.misc

rec
rec.{autos, motorcycles}

rec.sport.{baseball, hockey}
sci sci.{crypt, med, electronics, space}

talk
talk.politics.{guns, mideast, misc}

talk.religion.misc

sets sci versus talk, rec versus sci, and rec versus talk
in the experimental setting. For the data set sci versus
talk, we randomly select one subcategory from sci and
one subcategory from talk, which denote the positive and
negative data, respectively. The test data set is similarly
constructed as the training data set, except that they
are from different subcategories. Thus, the constructed
classification task is suitable for cross-domain learning
due to the facts that (i) the training and test data are
from different distributions since they are from different
subcategories; (ii) they are also related to each other since
the positive (negative) instances in the training and test
set are from the same top categories. For the data set sci
versus talk, we totally construct 144 (P 2

4 · P 2
4 ) classification

tasks. The data sets rec versus sci and rec versus talk are
constructed similarly with sci versus talk.

6.1.2. Three-class classification

We construct three-classification problems similarly to
the two-class case. For the four top categories, we can
construct four data sets, comp versus rec versus sci, comp
versus rec versus talk, comp versus sci versus talk, and
rec versus sci versus talk, by randomly selecting three
top categories. For each data set, the subcategories from
each top categories are selected to form source and target
domains, except that they are from different subcategories.
Thus we can obtain 1728 (P 2

4 · P 2
4 · P 2

4 ) classification tasks
for each data set. In this three-class situation, we only
perform the experiments on 100 randomly selected problem
instances from each data set.

To further validate our algorithm, we also perform exper-
iments on the data set Reuters-21578,3 which has three
top categories orgs, people, and place (each top category
also has several subcategories). We evaluate the proposed
algorithm on three classification tasks constructed by Gao
et al. [2].

3 http://www.daviddlewis.com/resources/testcollections
/reuters21578/
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6.2. Baseline Methods and Evaluation Metric

We compare MTrick with some baseline classification
methods, including the supervised algorithms of logis-
tic regression (LR) [28], LibSVM [29], support vector
machine (SVM) [30], and the semisupervised algorithm of
transductive support vector machine (TSVM) [31], also the
cross-domain methods of coclustering-based classification
(CoCC) [5] and the local weighted ensemble (LWE) [2].
Additionally, the two-step optimization approach using
Eqs. (7) and (8) is adopted as baseline (denoted as
MTrick0). The prediction accuracy on the unlabeled target-
domain data is the evaluation metric.

6.3. Implementation Details

In MTrick, F s, F t, G s,G t, S are initialized as follows:

1. F s and F t are initialized as the word cluster-
ing results by PLSA [19]. Specifically, Fs(ij)

and
Ft(ij)

are both initialized to be P (zj |wi) output by
PLSA on the whole data set of the source and tar-
get domain. We adopt the Matlab implementation
of PLSA4 in the experiments.

2. G s is initialized as the true class information in
the source domain.

3. G t is initialized as the predicted results of any
supervised classifier, which is trained based on
the source-domain data. In this experiment, LR is
adopted to give these initial results.

4. S is initialized as follows: each entry is assigned
with the same value and the sum of values in each
row satisfies

∑
j S(ij) = 1.

Note that PLSA has a randomly initialization process. Thus,
we perform the experiments three times and the average
performance of MTrick is output. The tf-idf weights are
used as entry values of the word-document matrix Y , which
is then transformed to the joint probability matrix X . The
threshold of document frequency with value of 15 is used
to decrease the number of features. After some preliminary
test, we set the trade-off parameters α = 1, β = 1.5, the
error threshold ε = 10−11, the maximal iterating number
max = 100, and the number of word clusters k1 = 50.

The baseline methods LR is implemented by the
package,5 SVM and TSVM are given by SVMlight.6

The parameter settings of CoCC and LWE are the same
with those in their original papers, and the value of α in
Eq. (7) is set to 1 after careful investigation for MTrick0.

4 http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/code
/index.html

5 http://research.microsoft.com/∼minka/papers/logreg/
6 http://svmlight.joachims.org/

6.4. Experimental Results

Next, we present detailed experimental results. To
intuitively show the advantage of our method, the best
values of accuracy are marked with bold font in Tables 2,
4 and 5.

6.4.1. Two-class classification

A Comparison of LR, SVM, TSVM, CoCC, MTrick0,
and MTrick: We compare these classification approaches
on the data set sci versus talk, rec versus sci, and rec versus
talk, and all the results of 144 × 3 problems are recorded in
Figs. 2–4. The 144 problems of each data set are sorted by
increasing order of the performance of LR. Thus, the x -axes
in these figures can also indicate the degree of difficulty in
knowledge transferring.

From the results, we have the following observations:

• Figures 2(a), 3(a), and 4(a) show that MTrick
is significantly better than the supervised learning
algorithms LR and SVM, which indicates that the
traditional supervised learning approaches cannot
perform well on the cross-domain learning tasks.

• MTrick is also much better than the semisupervised
method of TSVM.

• In Figs. 2(b), 3(b), and 4(b), the left side of red-
dotted line represents the results when the accuracy
of LR lower than 65%, while the right represents the
results when the accuracy of LR higher than 65%. It
is shown that when LR achieves accuracy higher than
this threshold, MTrick and CoCC perform similarly.
However, when the accuracy of LR is lower than this
threshold, MTrick performs much better than CoCC.
These results indicate that MTrick has the stronger
ability to transfer knowledge when the labeled source
domain cannot provide enough auxiliary information.

• MTrick is also better than MTrick0, which shows that
the joint optimization can achieve a better solution
than the separate optimization.

Additionally, we compare these classification algorithms
by the average performance of all 144 problems from each
data set, and the results are listed in Table 2 (L and R
denote the average results when the accuracy of LR lower
and higher than 65%, respectively, while Total represents
the average results on all 144 problems). The t-test with
95% confidence also shows the performance improvement
of MTrick by other compared algorithms is statistically
significant. All these results again show that MTrick is
an effective approach for cross-domain learning, and has
stronger ability to transfer knowledge.
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Fig. 2 The performance comparison among LR, SVM, TSVM, CoCC, MTrick0, and MTrick on data set sci versus talk. (a) MTrick
versus LR, SVM, TSVM on data set sci versus talk ; (b) MTrick versus MTrick0, CoCC on data set sci versus talk.
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Fig. 3 The performance comparison among LR, SVM, TSVM, CoCC, MTrick0, and MTrick on data set rec versus sci. (a) MTrick
versus LR, SVM, TSVM on data set rec versus sci ; (b) MTrick versus MTrick0, CoCC on data set rec versus sci.
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Fig. 4 The performance comparison among LR, SVM, TSVM, CoCC, MTrick0, and MTrick on data set rec versus talk. (a) MTrick
versus LR, SVM, TSVM on data set rec versus talk ; (b) MTrick versus MTrick0, CoCC on data set rec versus talk.
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Table 2. Average performances (%) on 144 problem instances of each data set for two-class classification.

Data sets LR SVM TSVM CoCC MTrick0 MTrick

sci versus talk
L 59.09 62.88 72.13 81.09 76.90 86.52
R 74.21 71.70 81.58 93.41 91.28 93.71
Total 70.64 69.62 79.35 90.50 87.88 92.01

rec versus sci
L 57.42 56.78 75.73 79.69 85.39 90.44
R 75.76 73.48 91.66 96.18 93.50 95.53
Total 65.57 64.20 82.81 87.02 88.99 92.70

rec versus talk
L 60.28 67.64 79.82 85.62 87.62 95.57
R 76.29 76.52 86.52 96.14 91.19 95.09
Total 72.49 74.42 84.94 93.66 90.35 95.21

Table 3. The data description for performance comparison
among LR, SVM, TSVM, CoCC, LWE, and MTrick.

Data sets Source domain Ds Target domain Dt

orgs versus people
orgs versus place
people versus place

Document from a set
of subcategories

Document from a
different set of
subcategories

Table 4. The performance comparison results (%) among LR,
SVM, TSVM, CoCC, LWE, and MTrick.

Data sets LR SVM TSVM CoCC LWE MTrick

orgs versus 74.92 74.25 73.80 79.79 79.67 80.80people

orgs versus 71.91 69.99 69.89 74.18 73.04 76.77place

people versus 58.03 59.05 58.43 66.94 68.52 69.02place

A Comparison of LR, SVM, TSVM, CoCC, LWE,
and MTrick: Furthermore, we also compare MTrick with
LR, SVM, TSVM, CoCC, and LWE on Reuters-21578. The
adopted data sets7 are depicted in Table 3. The experimental
results are recorded in Table 4 (we adopt the evaluation
results of TSVM and LWE on the three problems in
Ref. [2]). We can find that MTrick is better than all the
algorithms LR, SVM, TSVM, CoCC, and LWE, which
again show the effectiveness of MTrick.

6.4.2. Multiclass classification

To further test the superiority of MTrick to deal with
multiclass classification problems, we compare it with LR,
LibSVM, CoCC, and MTrick0. Note that LR and CoCC are
adapted to handling multiclass situation by one versus rest
manner.

We conduct three-class classification experiments on four
data sets depicted in Section 6.1. All the results are shown

7 http://ews.uiuc.edu/∼jinggao3/kdd08transfer.htm. Gao et al.
[2] gives the detailed description.

in Fig. 5. We can be informed that MTrick gains a remark-
able improvement over LR, LibSVM, CoCC, and MTrick0,
especially, MTrick can reach the accuracy higher than 80%
even LR and LibSVM have the random guess performance
in Fig. 5(d). Also we can find that the performance of CoCC
on three-class classification is consistent with the results
when dealing with two-class classification. When the accu-
racy of LR is lower than 65%, CoCC seriously suffers from
the distribution gap. All these results validate the effective-
ness of MTrick to deal with multiclass scenarios.

We also investigate the average performance of 100
problem instances for each data set according to the
evaluation metric method in Section 6.4.1, and the results
are listed in Table 5. Again these results show MTrick is
better than all comparison algorithms.

6.5. Analysis of the Output F s and F t

MTrick not only outputs the prediction results for target
domain, but also generates the word clusters for the
source and target domain data, expressed by F s and F t,
respectively. In other words, the words in source domain
and target domain are all grouped into k1 clusters after
optimization. Following, we aim to show that the word
clusters from the source and target domains are related to
and different from each other. For each cluster we can select
t (here t = 20) representative words, actually the t most
probable words. Let Ai and Bi be the sets of representative
words for the ith (1 ≤ i ≤ k1) cluster in source domain
and target domain, respectively, and Ci be the sets of
representative words for the ith word cluster output by
PLSA. Then, we define two measures as follows:

r1 = 1

k1

k1∑
i=1

|Ii |
|Ci | , (29)

r2 = 1

k1

k1∑
i=1

|Ui

⋂
Ci |

|Ci | , (30)
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Fig. 5 The performance comparison among LR, LibSVM, MTrick0, and MTrick on four data set for three-class classification. (a) MTrick
versus LR, LibSVM, MTrick0 on data set comp versus rec versus sci ; (b) MTrick versus LR, LibSVM, MTrick0 on data set comp versus
rec versus talk ; (c) MTrick versus LR, LibSVM, MTrick0 on data set comp versus sci versus talk ; (d) MTrick versus LR, LibSVM,
MTrick0 on data set rec versus sci versus talk.

Table 5. Average performances (%) on 100 problem instances of each data set for three-class classification.

comp versus rec versus sci comp versus rec versus talk comp versus sci versus sci rec versus sci versus talk

L R Total L R Total L R Total L R Total

LR 55.53 72.49 61.81 61.54 77.52 74.65 59.44 69.10 62.63 64.88 70.34 56.45
LibSVM 52.35 71.11 59.29 55.17 71.19 68.31 55.51 64.76 58.56 64.03 64.91 52.31
CoCC 50.53 72.46 58.65 56.99 74.47 71.33 35.12 52.32 40.80 46.30 57.58 48.33
MTrick0 81.20 89.53 84.28 87.14 92.91 91.87 76.95 88.64 80.81 81.00 90.78 81.83
MTrick 87.31 93.22 89.50 91.41 95.51 94.77 80.12 92.12 84.08 89.48 93.58 88.60

where Ii = Ai

⋂
Bi and Ui = Ai

⋃
Bi . For each problem

constructed from the data set sci versus talk we record these
two values and the results are shown in Fig. 6. The curve of
r1 shows that although the word clusters from the source
domain and target domain are different, they are related
by sharing some representative words for word clusters.

The curve of r2 shows that the union of the word clusters
from the source and target domains is similar to those out-
put by PLSA based on the whole data. In other words the
word clusters in the source and target domains not only
exhibit their specific characteristics, but also share some
general features. These results coincide with our analysis
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Fig. 6 The values of r1 and r2 on all the problems of data set
sci versus talk.

that different data domains may use different terms in
expressing the same concept; however, they are also closely
related to each other.

6.6. Parameter Effect

In the problem formulation, we have three parameters,
including two trade-off factors α, β and the number of
word clusters k1. Though the optimal combination of these
parameters is hard to obtain, we can empirically show
the performance of MTrick is not sensitive when the
parameters are sampled in some value ranges. We bound
the parameters α ∈ [1, 10], β ∈ [0.5, 3] and k1 ∈ [10, 100]
after some preliminary test and evaluate them on ten
randomly selected problems of data set sci versus talk. Ten
combinations of parameters are randomly sampled from the
ranges, and the results of each problem on each parameter

setting and their average performance are shown in Table 6.
The 12th and 13th rows denote the variance and mean of ten
parameter settings for each problem, respectively. The last
row represents the performance using the default parameters
adopted in this paper.

From Table 6, we can find that the average performance
of all the parameter settings is almost the same with
the results from the default parameters. Furthermore, the
variance of all the parameter settings is small. It shows that
the performance of MTrick is not sensitive to the parameters
when they are sampled from the predefined bounds.

6.7. Algorithm Convergence

Here, we also empirically check the convergence prop-
erty of the proposed iterative algorithm. For nine randomly-
selected problems of sci versus talk, the results are shown in
Fig. 7, where the x-axis represents the number of iterations,
and the left and right y-axes denote the prediction accu-
racy and the logarithm of the objective value in Eq. (11),
respectively. In each figure, it can be seen that the value of
objective function decreases along with the iterating pro-
cess, which agrees with the theoretic analysis.

7. CONCLUDING REMARKS

In this paper, we studied how to exploit the associations
between word clusters and document clusters for cross-
domain learning. Along this line, we proposed a MTrick
which simultaneously deals with the two tri-factorizations
for the source- and target-domain data. To capture the fea-
tures in the conceptual level for classification, in MTrick,
the associations between word clusters and document clus-
ters remain the same in both source and target domains.
Then, we developed an iterative algorithm for the proposed

Table 6. The parameter effect for performance (%) of algorithm MTrick on data set sci versus talk.

Problem ID

Sampling ID α β k1 1 2 3 4 5 6 7 8 9 10

1 2.44 2.39 58 92.34 94.28 95.37 88.47 94.99 92.43 95.24 92.04 91.69 95.32
2 7.45 1.69 83 93.05 94.35 97.00 88.47 95.28 92.69 94.91 91.76 92.33 95.30
3 6.92 0.96 38 95.92 94.70 97.33 90.90 95.01 89.32 94.47 90.45 89.99 95.63
4 2.67 1.65 15 94.39 95.53 96.02 90.53 95.42 92.59 94.55 90.92 90.02 95.28
5 5.61 2.45 72 91.58 95.07 94.79 87.83 95.34 93.17 94.99 91.24 91.75 95.28
6 3.63 2.32 32 93.59 94.12 94.98 89.98 95.57 92.90 94.49 91.83 91.24 95.09
7 2.30 1.57 21 92.72 94.46 96.47 89.77 94.84 92.43 94.49 91.34 91.46 96.23
8 7.53 0.72 52 95.80 94.12 97.52 91.13 95.40 89.55 94.35 89.71 90.12 95.47
9 1.88 1.50 26 95.57 94.14 96.90 90.70 95.71 92.69 94.93 91.53 90.08 95.08

10 7.95 1.18 92 94.54 95.02 97.51 89.75 95.28 92.18 94.55 91.38 92.28 95.70
Variance 2.351 0.236 1.089 1.370 0.073 1.897 0.085 0.496 0.913 0.119
Mean 93.95 94.58 96.39 89.75 95.28 92.00 94.70 91.22 91.10 95.44
This paper 1 1.5 50 93.77 94.42 94.99 90.33 95.05 93.12 95.96 93.84 90.90 95.66
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Fig. 7 Number of iterations versus the performance of MTrick and objective value. (a) Problem 1; (b) problem 2; (c) problem 3; (d)
problem 4; (e) problem 5; (f) problem 6; (g) problem 7; (h) problem 8; (i) problem 9.

optimization problem, and also provided the theoretic anal-
ysis as well as some empirical evidences to show its conver-
gence property. Finally, the experimental results show that
MTrick can significantly improve the performance of cross-
domain learning for text categorization. Note that, although
MTrick was developed in the context of text categorization,
it can be applied to more broad classification problems with
dyadic data, such as the word-document matrix.
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